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ARTICLE INFO ABSTRACT

Keywords: Purpose: Tumor cells are spontaneously or adaptively resistant to chemotherapeutic drugs, eventually leading to
Cancer the selection of multiresistant cells responsible for tumor growth and metastasis. Chemosensitization of tumor
Chemotherapy cells to conventional drugs using non-toxic natural products is a recent and innovative strategy aiming to in-
Chemosensitization

crease the cytotoxic efficiency of anticancer drugs, limit their toxic side effects and delay the appearance of
acquired chemoresistance. This systematic review summarizes data obtained from preclinical studies reporting
the use of natural products to sensitize tumor cells to chemotherapeutic agents. It also details the cellular and
molecular mechanisms involved in chemosensitization.

Design: Search terms were combined and used to retrieve English language reports in PubMed, Science Direct
and Scopus databases, published until October 2017. All articles were carefully analyzed and data extraction was
conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed.
Results: From a total of 669 articles surveyed, 104 met the inclusion criteria established. The main studied
compounds as chemosensitizers were phenolic derivatives (26.9%) and flavonoids (17.3%). Most reports were
authored by researchers from China (33.7%) and USA (26.9%). A large number of articles were published from
2011 to 2015 (50.0%), suggesting that the use of natural products as chemosensitizers is a recent issue. In vivo
studies were conducted mainly using xenograft models, which were considered of moderate methodological
quality.

Conclusion: Several natural products, belonging to diverse chemical families, are potent chemosentisizers in
tumor cells enhancing the cytotoxicity of conventional drugs. These molecules usually have a pleiotropic effect
on different molecular targets, acting on several cellular and molecular processes with low selectivity. All studied
molecules were obtained from terrestrial plants and major developments should arise from future studies,
considering the chemodiversity of molecules purified from other terrestrial taxa and marine organisms.

Drug resistance
Natural products

1. Introduction

Cancer is one of the most impactful diseases of the 21st century,
affecting populations of diverse social, ethnic and economic char-
acteristics. Although the genetic, epigenetic and pathophysiological
mechanisms of cancer have been well described in recent years, cancer
still represents the second cause of death in developed countries after
heart disease [1,2].

To ensure their survival and proliferation, cancer cells acquire dif-
ferentiated abilities compared to normal cells. In the development of
malignant tumors, they may present constitutively active proto-onco-
genes, which predisposes to carcinogenesis, maintaining proliferative

signaling pathways active [3]. In addition, expression of tumor sup-
pressor genes is usually decreased and the cell acquires sufficient au-
tonomy to continue multiplying without the need for growth factors.
Tumor cells also have replicative immortality mechanisms [4] and
greater resistance to cell death mediated by the regulation of anti and
pro-apoptotic proteins [5]. For tumor maintenance and progression,
they stimulate the production of angiogenic factors and modulate cel-
lular metabolism in order to obtain more nutrients [3,6].

In this sense, chemotherapy is one of the main alternatives for
cancer treatment, using molecules capable of inhibiting proliferative
signaling pathways, replicative immortality mechanisms and angio-
genesis, besides inducing apoptosis of tumor cells [7-10]. However, the
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Fig. 1. General drug resistance mechanisms implicated in cancer therapy and possibilities of intervention of natural products (NP) as chemosensitizer agents.

efficacy of conventional chemotherapeutics has been limited by drug
resistance mechanisms [11]. Several studies have recognized that tu-
mors exhibit a high degree of molecular and genetic heterogeneity,
making them adapted to the usual cytotoxic agents. Unsuccessful
treatments have been attributed to increased rates of drug efflux, al-
terations in drug metabolism (drug inhibition and degradation), cell
death inhibition, epigenetic factor and mutations of drug targets
(Fig. 1). These mechanisms can act independently or in combination
and through numerous signaling pathways [11-13].

A wide variety of natural compounds has been reported for cancer
therapy [14,15]. Natural products are an inexhaustible source of mo-
lecules with unique structural models and innovative mechanisms of
action. In fact, natural compounds can be used in a versatile manner,
especially in cancer management: a) as chemotherapeutic agents
[16,17]; b) in cancer prevention (chemopreventive agents) [18,19]; c)
or improving the effectiveness of conventional chemotherapy (chemo-
sensitizer agents) [20].

Most of the identified chemosensitizer natural compounds are
phytochemicals, which are classified as phenolic derivatives, flavo-
noids, alkaloids, carotenoids, terpenoids, quinones, saponins and ster-
oids depending on their molecular structure [20,21]. In general, these
molecules act by increasing the residence time of chemotherapeutics in
tumor cells, inducing cell death by up-regulation of pro-apoptotic tar-
gets, promoting DNA damage or regulating the expression of altered
and unaltered drug targets (Fig. 1). When associated, these mechanisms
enhance the cytotoxic effect of anticancer drugs, promoting a sy-
nergistic effect even in cells with acquired resistance [22-24].

The present systematic review was designed to summarize and
analyze reports involving the use of natural products as chemosensiti-
zers. Our focus was on preclinical studies (in vitro and in vivo ap-
proaches) in order to demonstrate to readers how these experimental
models can contribute to the achievement of alternative strategies for
cancer therapy.

2. Materials and methods
2.1. Search strategy

A systematic review was conducted through a literature search

performed in October 2017 and included all reports published to date.
This literature search was performed on specialized databases (PubMed,
Science Direct and Scopus) using different combinations of the fol-
lowing keywords: chemosensitization, cancer, tumor, natural products,
phytotherapy, medicinal plants, marine products and marine drugs. We
did not contact investigators and we did not attempt to identify un-
published data. This systematic review was performed in accordance
with the criteria described on the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [25].

2.2. Study selection

Manuscript selection was based on the inclusion criteria: pre-clinical
(in vitro and in vivo) studies involving the use of natural compounds/
secondary metabolites as chemosensitizer agents of tumor cells to
chemotherapeutic drugs, as well as pre-clinical (in vitro and in vivo)
studies involving associations/combinatorial treatment between nat-
ural compounds/secondary metabolites and conventional chemother-
apeutic drugs for antitumor therapy; only articles published in English
and containing keywords in the title or abstract were selected. Other
review articles, meta-analysis, abstracts, conferences, editorials/letters,
case reports, conference proceedings, manuscripts without full text
available or articles that did not meet the inclusion criteria were ex-
cluded from this systematic review. Studies involving extracts, frac-
tions, synthetic or semisynthetic derivatives were also excluded.

For the selection of the manuscripts, two independent investigators
(RGOJ and CAAF) first selected the articles according to the title, then
to the abstract and finally through an analysis of the full-text publica-
tion. In cases of non-consensus, a third independent review was con-
sulted (JRGSA). The selected articles were carefully reviewed with the
purpose of identifying and excluding the reports that did not fit the
criteria described above. Additional papers were included in this review
after the analysis of all references from the selected articles.

2.3. Data extraction

Data were collected and examined by the authors using standar-
dized forms. The information from the selected manuscripts on studied
natural compounds, experimental models, associated chemotherapeutic
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agent, doses or concentrations, route of administration, cell lines, bio-
chemical assays, histological assessments and molecular mechanisms
studied were extracted and assessed.

2.4. Methodological quality assessment

The risk of bias and quality of the in vivo preclinical investigations
were assessed using a checklist adapted from Hooijmans et al. [26] and
Siqueira-Lima et al. [27]. This analysis allowed evaluating the metho-
dological quality of the selected studies regarding the randomization of
the treatment allocation, blinded drug administration, blinded outcome
assessment and outcome measurements. Studies that reported rando-
mization of animals, blinding and outcome measurements were con-
sidered of higher methodological quality.

3. Results

The primary search identified 669 reports (08 from PubMed, 562
from Science Direct and 99 from Scopus). However, 147 manuscripts
were indexed in two or more databases and were considered only once,
resulting in 552 original articles. After an initial screening of titles and
abstract, 436 articles were excluded since they did not meet the in-
clusion criteria or presented extremely different themes from the pro-
posal of this systematic review. Finally, 86 articles were fully analyzed
and among these 39 were excluded. A detailed analysis of the list of
references from all selected articles was performed, leading to the ad-
dition of 57 papers pertinent to this review and that met all inclusion
criteria established after title, abstract and full text analysis. In total,
104 articles were included for data extraction. A flowchart illustrating
the progressive study selection and numbers at each stage is shown in
Fig. 2.

The articles selected for this review were categorically analyzed in
relation to the country where the study was conducted, year of pub-
lication, natural compounds evaluated as chemosensitizers, cell lines
and corresponding cancers. Table 1 summarizes the main informations
contained in the selected in vitro and in vivo reports. In general, the
studies were conducted by research groups located in about 20 different
countries. However, most of the investigations were authored by re-
searchers from China (35 reports, 33.7%) and USA (28 reports, 26.9%).
Regarding the annual evolution of the publications, a large number of
articles were published from 2011 to 2015 (52 reports, 50.0%). Only in

Identified studies from the databases using keywords (n=669):
PubMed (n=08), Science Direct (n=562), Scopus (n=99)

Duplicates (n=147) |

522 articles for title and abstract analysis |

| Excluded (n=436) |

86 articles for full-text analysis |

—

Excluded (n=39) |

Added after manual
search (n=57)

| INCLUDED | ELIGIBILITY | SCREENING | IDENTIFICATION |

104 articles included

Fig. 2. Flowchart detailing literature search according to PRISMA statement [25].
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the last two years, 18 articles (17.3%) have been published, suggesting
that the use of natural products as chemosensitizers is a recent issue
that has attracted researchers' attention.

Combinatorial therapy (natural compounds and conventional che-
motherapeutic) were used in various types of cancer. Breast and colon
cancer were the most cited (16 reports each), followed by leukemia and
associate cancers, lung, pancreatic, prostate and cervical cancer.
Concerning the conventional anticancer drugs mentioned, about 40
different chemotherapeutic agents have been reported in combination
with one or more natural molecules, varying according to the type of
cancer studied, as shown in Table 1. Similarly, a wide variety of natural
compounds have been reported as chemosensitizer agents. Most of the
molecules studied belong to the class of phenolic derivatives (28 re-
ports, 26.9%) and flavonoids (18 reports, 17.3%). Besides these, ter-
penoids, alkaloids, saponins, quinones and steroids were also con-
siderably cited. These and other important outcomes are graphically
presented in Fig. 3.

Our systematic review consisted of 67 in vitro studies, 6 in vivo
studies, and 31 reports presenting in vitro and in vivo outcomes. In vitro
investigations included biochemical and molecular analysis, specially
colorimetric and enzymatic assays, flow cytometry, western blot and
immunofluorescence techniques. In vivo reports were performed using
allograft or xenograft model, as shown in Table 2. In general, natural
compounds potentiated the antitumor effect of chemotherapeutics by
reducing tumor volume and weight. In some cases, synergistic inhibi-
tion of metastasis and increased apoptosis index were also observed.
Combinatorial treatments were performed on the same day or on al-
ternate days for 1 to 4 weeks. The used chemotherapy drugs varied
according to the type of cancer studied. All natural products tested in
vivo were also assayed in vitro, providing relevant findings on molecular
targets implicated in their pharmacological effect. The chemical struc-
tures of these compounds are shown in Fig. 4.

Concerning to methodological quality, all in vivo studies were
carefully analyzed through a standard checklist adapted for preclinical
trials. As shown in Fig. 5, all studies described the objectives, outcomes
to be measured and main findings obtained. In general, combinatorial
treatments (chemosensitizer and conventional chemotherapeutic,
doses, routes of administration and frequency of treatment) were
properly reported. Most of the studies (31 reports, 83.8%) have also
reported randomization of animal allocation. On the other hand, none
of the included articles reported sample size calculations. In addition,
no information on blinding strategy was provided.

4. Discussion

Cancer therapy is based on the use of one or more treatment stra-
tegies, including surgical removal of the tumor, radiotherapy, im-
munotherapy, phototherapy and chemotherapy. Although che-
motherapy is recognized as one of the most effective strategies in the
treatment of various types of cancer, the phenomenon of chemoresis-
tance has become increasingly frequent, representing an obstacle to the
use of anticancer drugs [132]. Tumor cells may develop a multidrug-
resistant phenotype depending on the carcinogenic process per se, or
even due to exposure to conventional chemotherapeutics [133]. In this
sense, chemosensitization represents an alternative for overcoming
chemoresistance. It consists in the use of molecules capable of im-
proving the activity of another through the modulation of one or more
mechanisms of resistance (Fig. 1).

Historically, natural products have been shown to be more effective
than conventional anticancer drugs because of their multi-target po-
tential and low toxicity. Such compounds are already widely known as
promising anti-tumor and chemopreventive agents. Fortunately, several
research groups have also investigated the role of natural products in
sensitizing tumor cells. In this systematic review, most of the included
studies were published after 2011 (Fig. 3), indicating that the use of
natural compounds as chemosensitizer agents is still recent.
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Fig. 3. Distribution of the selected studies by country (A), year of publication (B), type of cancer studied (C) and chemical class of natural product evaluated as chemosensitizer (D).

Interestingly, China has been the country that most explores the use
of natural products as chemosensitizers (Fig. 3). In fact, Traditional
Chinese Medicine (TCM) has contributed to the development of new
pharmaceutical products based on plant extracts or even molecules
with unique chemical structures and innovative mechanisms of action
[134]. In cancer therapy, TCM has provided molecules with antitumor
and chemopreventive properties [135] and, more recently, chemo-
sensitizing potential. Shikonin, a natural naphthoquinone derived from
the Chinese medicinal herb Lithospermum erythrorhizon, showed sy-
nergistic effect with gemcitabine, cisplatin and arsenic trioxide against
pancreatic [95], colon [97] and hepatocellular [98] cancer, respec-
tively. Song et al. [28] and Liu et al. [36] have also demonstrated the
chemosensitizing effect of oxymatrine, one of the major components
extracted from Sophora flavescens, widely used in TCM. In addition,
several phenolic derivatives and flavonoids commonly found in Chinese
medicinal plants were investigated as chemosensitizers, including re-
sveratrol [65], curcumin [64], naringenin [49] and myricetin [56].

Concerning to in vivo studies included, natural products were in-
vestigated using xenograft model. In this model, human tumor cells are
transplanted via subcutaneous inoculation or into the organ type in
which the tumor originated, into immunocompromised animals that do
not reject human cells [136]. Xenograft models have been used not only
to determine the in vivo activity of new anticancer drugs, but also to
determine drug dose, treatment schedules and routes of administration
[137]. In this context, in vivo reports included in this review were ap-
propriately described. In addition to in vitro protocols, these models
offer a wealth of information on the mechanisms of action involved in
the chemosensitizing effect of natural products.

However, animal experiments should be well designed, efficiently

390

executed and data must to be correctly analyzed and interpreted [138].
Regarding the methodological quality assessment, we found that most
of studies were conducted randomly, but no information on blinding
was provided (Fig. 5). In addition, no study reported sample size cal-
culations. Although these parameters are often required in clinical
trials, the need of randomization and blinding have been strongly re-
commended for preclinical protocols in order to minimize the risk of
bias and avoid unexpected outcomes in clinical trials [139-141]. For
this reason, we consider that the in vivo studies included in this review
presented moderate methodological quality.

In general, phenolic derivatives and flavonoids were the most cited
compounds (Fig. 3). Curcumin, resveratrol and epigallocatechin-3-gal-
late have been extensively evaluated in combinatorial treatment with
clinically used chemotherapeutics. These compounds are widely found
in various medicinal plants and foods, such as red wine, fruits, vege-
tables and spices. The use of these molecules has been increasingly
encouraged in cancer treatment mainly because of their low toxicity
and immediate availability. Besides, phenolic compounds possess a
strong antitumor activity by modulating different pathways involved in
cell proliferation, invasion, metastasis and angiogenesis [19-22].
Usually, when cancer cells were treated by natural products in combi-
nation with chemotherapeutic drugs, there was an additive cytotoxic
effect caused by the activation of alternative signaling pathways that
induce cell death, or even by increasing the residence time of the an-
ticancer drug in the cell, improving its performance.

Next, we selected the natural compounds most cited in this review
in order to better understand the different mechanisms of action in-
volved in the sensitization of tumor cells. All findings described below
were extracted from in vitro and in vivo included studies.
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Table 2 (continued)

R B Reference

Main outcomes (Cancer)

Model (animal/

sex)

Combined drug Dose (route)

Dose (route)

Chemosensitizer

Y N Wang et al (2013a) [34]

Synergistic decrease in tumor volume and weight (esophageal

carcinoma)

Xenograft (Mi/

M)

12 mg/kg/twice weekly

5FU
(.t)

25 mg/kg/twice
weekly (i.t.)

Sinomenine

N N Wang et al. (2013b) [105]

Synergistic decrease in tumor volume (hepatocellular carcinoma)

Xenograft (Mi/

DOX 8mg/kg/day (i.v.)
NR)

5, 10 or 15mg/kg/

day (i.v.)

Steroidal saponin

Y N Jafri et al. (2010) [91]

Synergistic decrease in tumor volume (lung cancer)

2.5 mg/kg/week (i.p.) Xenograft (Mi/F)

CIP

5 or 20 mg/kg/day

(s.c.)

Thymoquinone

Synergistic decrease in tumor volume and weight, synergistic inhibition Y N Prasad et al. (2012) [124]

of metastasis (colon cancer)

Xenograft (Mi/

M)

60 mg/kg/twice weekly

CCT
(p-0.)

250 mg/kg/day

(p-0.)

Ursolic acid

Synergistic decrease in tumor volume and weight, synergistic inhibition Y N Fong et al. (2012) [115]

of microvessel formation and induction of autophagy (ovarian cancer)

Xenograft (Mi/

1 mg/kg/day (i.p.)
NR)

DOX

2mg/kg/day (i.p.)

Withaferin A

Synergistic decrease in tumor volume and weight, synergistic induction Y N Li et al. (2015) [117]

of apoptosis (pancreatic cancer)

Xenograft (Mi/

M)

10 mg/kg/twice weekly

@i.p)

OXP

3mg/kg/day (i.p.)

Y N Liuetal (2015b) [40]

Synergistic decrease in lung metastasis (lung cancer)

Xenograft (Mi/
M)

6 mg/kg/day (i.p.)

PTX

5mg/kg/day (p.o.)

a-carotene

Y N Zhang et al. (2016) [41]

Synergistic decrease in tumor volume and weight, improvement of

apoptosis (esophageal carcinoma)

Xenograft (Mi/

M)

5mg/kg/thrice weekly

5FU
@i.p.)

5mg/kg/thrice
weekly (i.g.)

B-carotene

Y N Torres et al. (2011) [123]

Synergistic decrease in tumor volume and weight (glioma)

Xenograft (Mi/

5mg/kg (i.t.)
NR)

TMZ

15 mg/kg (i.t.)

A°-Tetrahydrocannabinol

Combined drugs: 5-fluorouracil (5FU); arsenic trioxide (ATO); capecitabine (CCT); cisplatin (CIP); docetaxel (DTX); doxorubicin (DOX); gemcitabine (GCT); methotrexate (MET); oxaliplatin (OXP); paclitaxel (PTX); temozolamide (TMZ). Routes:

i.g. (intragastric), i.t. (intratumoral), i.p. (intraperitoneal), i.v. (intravenous), p.o. (per oral), s.c. (subcutaneous). F: female. M: male. NR: not reported. Mi: mice. R: reporting of randomization. B: reporting of blinding.
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4.1. Curcumin

Curcumin (diferuloyl methane) is a naturally occurring phenolic
pigment found in rhizomes of Curcuma longa Linn., commonly known as
turmeric. Usually, curcumin content in turmeric varies from 1 to 5%
and it is widely used in foods, as a cosmetic ingredient, and in some
medicinal preparations [142]. It has potent anti-inflammatory, antic-
ancer and chemopreventive properties, but without exhibiting toxic
effects in animal models even at high doses [143-145]. Curcumin has
demonstrated multiple anticancer effects, including inhibition of cell
proliferation, induction of apoptosis, inhibition of angiogenesis and
metastasis. Several mechanisms have been implicated in these effects,
such as activation of pro-apoptotic proteins and inhibition of nuclear
factor kB (NF-xB) and phosphatidylinositol (PI)3-kinase/Akt (PI3K/Akt)
pathways, commonly activated in multiresistant tumor cells [20]. In
Fig. 6, we show the main mechanisms involved in the chemosensitizing
effect of curcumin.

In contrast to healthy cells, NF-xB pathway is constitutively active in
the majority of solid and hematopoietic tumor cell lines. Additionally,
chemotherapeutic agents and pro-inflammatory cytokines also activate
NF-xB over time, contributing to chemoresistance of tumor cells. NF-xB
is a tumorigenic transcription factor associated with evasion of apop-
tosis, sustained cell proliferation, invasion, metastasis and angiogen-
esis. It is a complex protein composed of different subunits (p50, p52,
p65, RelB and c-Rel), mainly p50/p65. Under normal conditions, NF-kB
is retained in the cytoplasm by its interaction with inhibitors of kB
(IkBa, IkBp or IkBe). However, IkB kinases (IKKs) are able to phos-
phorylate IkB portion, resulting in its subsequent ubiquitination and
proteasome-mediated degradation, and consequently in the release of
NF-kB, which then translocates to the nucleus [74,146]. In this review,
we have identified that curcumin down-regulates NF-kB activation in-
duced by chemotherapeutic agents, such as paclitaxel [67,68,75], 5-
fluorouracil [82] and capecitabine [72] in cervical, breast and colon
cancer. Western blot and immunohistochemical analysis showed that
curcumin inhibits NF-kB (p65 subunit), IkBa/B phosphorylation and
IKK activation, resulting in synergistic antitumor effect when combined
with conventional chemotherapeutic agents [64,87].

NF-kB can also be stimulated via the PI3K/Akt signaling pathway.
Initially, exposure to cellular survival factors (growth factors, cyto-
kines, etc.) hyperactivates PI3K, leading to high Akt activation, con-
ferring cell survival and resistance to chemotherapy-induced apoptosis.
In fact, Akt protects apoptosis by stimulating anti-apoptotic proteins
(e.g. survinin) and inhibiting pro-apoptotic signals (e.g. BAD).
Furthermore, Akt induces the release of NF-kB through activation of
IKK [79,147]. Once available, NF-xkB upregulates the expression of
multiple MDR genes in tumor cells that play a role in apoptosis, cell
proliferation, invasion, metastasis and angiogenesis [72]. In this sense,
pharmacological investigations have demonstrated that curcumin po-
tentiates anticancer effects of chemotherapeutics not only by inhibiting
PI3K, Akt and NF-xB factors [68,75,79,82], but also the proteins ex-
pressed by the activation of these signaling pathways, including those
involved in cell proliferation (e.g. Cyclin D1, COX-2, c-Myc), invasion
(e.g. MMP-9), metastasis (e.g. CXCR4 and ICAM-1) and angiogenesis
(e.g. VEGF) [72,79,87]. Finally, curcumin also acts synergistically with
chemotherapeutics in the induction of apoptosis through stimulation of
pro-apoptotic (e.g BAD, BID, BIM, BAX, caspases 3, 8 and 9) proteins
and inhibition of anti-apoptotic proteins (e.g. Bcl-2, Bcl-xL and survinin)
[72,75,84].

MDRs may also involve efflux pumps that reduce the residence time
of chemotherapeutic drugs in cancer cells. Anuchapreeda et al. [63]
have investigated the role of curcumin in P-glycoprotein (Pgp) ex-
pression. Pgp, also known as multidrug resistance protein, is an im-
portant transmembrane protein that pumps many foreign drugs out of
cells. Many synthetic Pgp modulators successfully reverse the MDR
phenotype in vitro. On the other hand, the use of these compounds has
been discouraged due to their toxicity profile observed in animal
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models and clinical trials. In this review, Pgp expression was found to
be decreased by 11, 31, 60 and 64% in response to 1, 2, 3 and 4 days of
treatment with 25 pM curcumin, respectively, enhancing sensitivity of
KB-V1 cells (cervical cancer) to vinblastine [63]. Since curcumin is
considered a safe natural product, it has served as a prototype for ob-
taining new Pgp-modulating drugs [89].

4.2. Resveratrol

Resveratrol (trans-3,5,4’-trihydroxystilben) is a natural compound
produced by the action of stilbene synthase in response to environ-
mental stress, widely found in grapes, red wine, medicinal plants,
various berries and nuts. This phenolic derivative possesses a wide
spectrum of pharmacological activities, including anticancer properties.
Resveratrol has presented an ability to target multiple signaling path-
ways implicated in tumor cell survival, inflammation, invasion, me-
tastasis and angiogenesis [148,149]. Several studies showed its anti-
tumor activity in human cancer from different origin, including skin,
breast, prostate, liver, pancreas, colon, lung and stomach [80,150]. In
recent years, resveratrol has been evaluated not only as a chemopre-
ventive or chemotherapeutic agent, but also as a chemosensitizer. In
our review, in vitro and in vivo evidences demonstrated that resveratrol
potentiates the antitumor effect of several chemotherapeutics, mainly
doxorubicin [65,77,81], 5-Fluorouracil [65,66,85], etoposide [80] and
gemcitabine [71].

Similar to curcumin, resveratrol sensitizes tumor cells by inhibiting
the NF-xB signaling pathway [85], as shown in Fig. 7. In addition, this
phenolic derivative modulates the expression of MDR genes by down-
regulating targets related to cell proliferation (e.g. cyclin D1, COX-2 and
c-Myec), invasion (e.g. MMP-9), metastasis (e.g. CXCR4 and ICAM-1) and
angiogenesis (e.g. VEGF) [71,85]. Resveratrol also enhances the cyto-
toxicity of chemotherapeutics through the induction of apoptosis by
regulating the expression of pro (e.g. p53, caspases 3 and 8) and anti-
apoptotic (e.g Bcl-2, Bcl-xL, XIAP and survinin) mediators in tumor
cells [65,71,80,85].

Diaz-Chavez et al. [81] showed that resveratrol sensitizes breast

cancer cells to doxorubicin therapy by inhibiting HSP27 expression.
HSP27 is present in several cell types, located mainly in the cytosol, but
also in the perinuclear region, endoplasmic reticulum and nucleus. It is
usually overexpressed during different stages of cell development and
differentiation. High HSP27 expression has been observed in several
types of cancer, suggesting that it plays an important role in cell pro-
liferation, metastasis and chemoresistance. HSP27 acts as an in-
dependent ATP chaperone by inhibiting protein aggregation and sta-
bilizing partially denatured proteins. In apoptosis, it interacts with
mitochondrial membranes, interfering with the activation of the cyto-
chrome-c/Apaf-1 complex and consequently preventing the activation
of pro-caspase 9 [151].

Interestingly, resveratrol also enhances the efficacy of chemother-
apeutics not only by interfering with intracellular signaling pathways,
but also by modulating the expression of transmembrane proteins in-
volved in cell proliferation and cytoskeleton stabilization. Buhrmann
et al. [85] showed that resveratrol induces chemosensitization of colon
cancer cells to 5-fluorouracil through up-regulation of intercellular
junctions, epithelial-to-mesenchymal transition and apoptosis. In this
investigation, resveratrol increased the expression of adhesion mole-
cules, such as E-cadherin and claudin-2 (also involved in tight junc-
tions), ensuring greater cell adhesion and consequently preventing
mechanisms of cell proliferation. Furthermore, resveratrol significantly
attenuated drug resistance by inhibiting epithelial-mesenchymal tran-
sition factors, such as vimentin. This protein is attached to the nucleus,
endoplasmic reticulum and mitochondria, laterally or terminally. The
vimentin filaments are associated with the nuclear and plasma mem-
branes, maintaining the position of the nucleus and the mitotic spindle
and guaranteeing flexibility to the cell. It is a component of the cytos-
keleton that interacts closely with microtubules, ensuring their stabi-
lization [152]. Once inhibited by resveratrol, vimentin disperses in
aggregates, causing loss of cytoplasmic integrity and changes in cellular
morphology (Fig. 7).
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4.3. Epigallocatechin-3-gallate

Epigallocatechin-3-gallate (EGCG) is a major flavonoid found in
green tea (Camelia sinensis) that possesses a broad spectrum of phar-
macological activities, including antiangiogenic [153], antic-
arcinogenic [154], antimetastatic [155,156] and chemopreventive ef-
fects [157]. These properties are attributed to its antioxidant potential,
cell signaling modulation, apoptosis induction, cell cycle arrest and
inhibition of different MMPs (matrix metalloproteinases). In recent
years, ECGC has been shown to be effective in sensitizing tumor cells to
conventional chemotherapy. In fact, EGCG potentiates the antitumor
effect of TRAIL (TNFa-related apoptosis-inducing ligand) [47], 4-MU
(4-methylumbelliferone) [59], taxane [51], IL-1Ra (IL-1 receptor an-
tagonist) [52], capecitabine [53], vorinostat [54], cisplatin [48], ta-
moxifen [45,48], docetaxel [58] and doxorubicin [43] in various types
of cancer, mainly breast [45,59] and prostate cancer [47,51,58].

In vitro and in vivo assays have demonstrated that EGCG enhances
the antitumor effect of other drugs by inducing apoptosis. In general,
EGCG up-regulates apoptotic proteins (e.g BAD, BAK, BAX, caspases 3,
6, 7, 8 and 9) and down-regulates anti-apoptotic factors (e.g Bcl-2, Bcl-
xL, XIAP, CIAP-1, survinin and Smac/Diablo) [47,54,58]. EGCG also
induces the expression of genes that are directly associated with cell
cycle arrest and apoptosis, such as p53, p73 and p21 [51].

Several studies have demonstrated that EGCG synergistically in-
hibits biomarkers associated with angiogenesis (e.g. VEGF, angiopoietin

1 and 2), invasion and metastasis (MMP-2, 3, and 9) [47,52-54], im-
proving the performance of chemotherapy in reducing tumor weight
and/or volume in xenograft models [53]. Although inhibition of the NF-
kB pathway does not appear to be directly involved in the mechanism of
EGCG-induced tumor cell sensitization, this flavonoid inhibits the Akt
pathway, indirectly resulting in lower expression of factors associated
with cell proliferation, invasion, metastasis, angiogenesis, and apop-
tosis. In addition, Wang et al. [58] showed that EGCG combined with
quercetin inhibits STAT3 (signal transducer and activator of transcrip-
tion 3) expression, contributing to sensitization of prostate cancer cells
to docetaxel. In the same study, the authors also demonstrated the
potential of these flavonoids to block MRP1 (multidrug resistance-as-
sociated protein 1), increasing the residence time of docetaxel in tumor
cells. All mechanisms involved in the sensitization of tumor cells by
EGCG are summarized in Fig. 8.

5. Conclusion

This systematic review unified information from the literature on
the use of natural compounds as chemosensitizers in cancer therapy. In
vitro and in vivo studies demonstrated that natural products act sy-
nergistically with drugs traditionally used in cancer therapy, enhancing
their antitumor efficacy through various mechanisms, including in-
duction of apoptosis and inhibition of cell proliferation, invasion, me-
tastasis, and angiogenesis. Although the in vivo tests presented
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moderate methodological quality, this report highlights the potential of
natural products as anticancer drug candidates in future clinical re-
search for combinatorial treatments. Considering that chemosensitiza-
tion of cancer cells by natural products is a recent strategy and that only
few resources have been explored at the moment, this research field
should be expanding rapidly in the coming years and provide efficient
alternatives to manage tumor chemoresistance.
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